Was ist FEM?

Die Grundidee der "Finite Element Methode" (FEM) ist relativ simpel. Man nehme einen geometrischen Grundkörper wie z. B. einen Tetraeder oder Hexaeder. Für eine deratrig einfache Geometrie lässt sich das physikalische Verhalten einfach mathematisch beschreiben.

Wenn nun mehrere dieser einzelnen Grundkörper (besagte „Finite-Elemente“) miteinander verbunden werden, entsteht ein Gleichungssystem, das schnell auch über eine Million Gleichungen enthalten kann. Mit diesen einzelnen Elementen können somit praktisch alle denkbaren Geometrien diskretisiert (vernetzt) werden. Es sollte lediglich auf die Qualität der Elemente geachtet werden und ein entsprechender Rechner sollte zur Verfügung stehen, um das Gleichungssystem zu lösen.

Ausführlichere Beschreibung der Methode liefert Wikipedia



140x140

FEM-Festigkeitsberechnungen

mehr...

140x140

Festigkeitsnachweise

mehr...

140x140

CFD-Strömungsanalysen

mehr...


140x140

Temperaturfeldberechnungen

mehr...

140x140

Schwingungsanalysen

mehr...

140x140

Railmotive

mehr...

140x140

Fahrzeugsicherheit

mehr...


140x140

Strukturoptimierung

mehr...

140x140

Schulungen

mehr...



Unternehmen

mehr...


Publikationen

mehr...


Anwendungen

mehr...

Aktuelles

mehr...


Warum FEM?

mehr...

Warum invenio?

mehr...

Karriere

mehr...


Kontakt

mehr...


Impressum

mehr...

Copyright © invenio. All rights reserved.